Cloud&AI
`
2025/6/6 08:53
阿里开源 Qwen3 新模型 Embedding 及 Reranker,带来强大多语言、跨语言支持
0
0

阿里今日凌晨开源了 Qwen3-Embedding 系列模型(Embedding 及 Reranker),专为文本表征、检索与排序任务设计,基于 Qwen3 基础模型进行训练。

官方表示,在多项基准测试中,Qwen3-Embedding 系列在文本表征和排序任务中展现了卓越的性能。

 

 

其具备如下特点:

卓越的泛化性:Qwen3-Embedding 系列在多个下游任务评估中达到行业领先水平。其中,8B 参数规模的 Embedding 模型在 MTEB 多语言 Leaderboard 榜单中位列第一(截至 2025 年 6 月 6 日,得分 70.58),性能超越众多商业 API 服务。此外,该系列的排序模型在各类文本检索场景中表现出色,显著提升了搜索结果的相关性。

灵活的模型架构:Qwen3-Embedding 系列提供从 0.6B 到 8B 参数规模的 3 种模型配置,以满足不同场景下的性能与效率需求。开发者可以灵活组合表征与排序模块,实现功能扩展。

此外,模型支持以下定制化特性:

表征维度自定义:允许用户根据实际需求调整表征维度,有效降低应用成本;

指令适配优化:支持用户自定义指令模板,以提升特定任务、语言或场景下的性能表现。

全面的多语言支持:Qwen3-Embedding 系列支持超过 100 种语言,涵盖主流自然语言及多种编程语言。该系列模型具备强大的多语言、跨语言及代码检索能力,能够有效应对多语言场景下的数据处理需求。

据介绍,Embedding 模型接收单段文本作为输入,取模型最后一层「EOS」标记对应的隐藏状态向量,作为输入文本的语义表示;Reranker 模型则接收文本对(例如用户查询与候选文档)作为输入,利用单塔结构计算并输出两个文本的相关性得分。

免责声明:本文仅代表作者个人观点,与C114通信网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

给作者点赞
0 VS 0
写得不太好

C114简介     联系我们     网站地图

Copyright©1999-2025 c114 All Rights Reserved 沪ICP备12002291号-4

C114通信网版权所有 举报电话:021-54451141 用户注销